582 research outputs found

    Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience

    Get PDF
    In this paper are presented the results of the investigation on optimal process operational conditions of thermophilic dark fermentation and anaerobic digestion of food waste, testing a long term run, applying an organic loading rate of 16.3 kgTVS/m3d in the first phase and 4.8 kgTVS/m3d in the second phase. The hydraulic retention times were maintained at 3.3 days and 12.6 days, respectively, for the first and second phase. Recirculation of anaerobic digested sludge, after a mild solid separation, was applied to the dark fermentation reactor in order to control the pH in the optimal hydrogen production range of 5-6. It was confirmed the possibility to obtain a stable hydrogen production, without using external chemicals for pH control, in a long term test, with a specific hydrogen production of 66.7 l per kg of total volatile solid (TVS) fed and a specific biogas production in the second phase of 0.72 m3 per kgTVS fed; the produced biogas presented a typical composition with a stable presence of hydrogen and methane in the biogas mixture around 6 and 58%, respectively, carbon dioxide being the rest

    Factorial Hidden Markov Model analysis of Random Telegraph Noise in Resistive Random Access Memories

    Get PDF
    This paper presents a new technique to analyze the characteristics of multi-level random telegraph noise (RTN). RTN is dened as an abrupt switching of ei- ther the current or the voltage between discrete values as a result of trapping/de-trapping activity. RTN sig- nal properties are deduced exploiting a factorial hid- den Markov model (FHMM). The proposed method considers the measured multi-level RTN as a super- position of many two-levels RTNs, each represented by a Markov chain and associated to a single trap, and it is used to retrieve the statistical properties of each chain. These properties (i.e. dwell times and amplitude) are directly related to physical properties of each trap

    A memory window expression to evaluate the endurance of ferroelectric FETs

    Get PDF
    The recent discovery of ferroelectricity in HfO2 has revived the interest into non-volatile memories based on ferroelectric transistors (FeFETs). The key advantages of these FeFETs include the low power consumption and the compatibility with the existing CMOS process. On the other hand, issues related mainly to endurance still represent a challenge to the development of the technology. In this Letter, we propose to exploit an analytical expression for the Memory Window (MW) as a simple yet effective characterization tool to evaluate the endurance of FeFETs. The MW is defined as the difference between threshold voltages occurring due to polarization switching. The analytical formulation of the MW allows one to quickly estimate the generated trap concentration as a function of number of writing cycles (or time) without recurring to numerical simulations. With the aid of the analytical model, we find that for typical program/erase pulse amplitudes and duration, endurance has a weak dependence on writing conditions. The characterization technique based on the MW would allow the systematic comparison of the performance and endurance of next-generation FeFETs

    Force Impact Effect in Contact-Mode Triboelectric Energy Harvesters: Characterization and Modeling

    Get PDF
    In this paper we investigate the effect of the contact force on the voltage generated by Contact-Mode Triboelectric Energy Harvesting Devices (CM-TEHD). The electrical energy harvested from mechanical shocks increases with the contact force. In order to investigate the role of the contact force in the triboelectric energy generation, we developed a physical model, which allows understanding the physical mechanisms of this process, while predicting the output voltage and power at given conditions. Prototypes of the CM-TEHD made of low-cost commercial silicone were fabricated using a very low cost process. The prototypes provide up to 5.5µW when subjected to repetitive impacts with a contact force of 65N

    Characterization and TCAD Modeling of Mixed-Mode Stress Induced by Impact Ionization in Scaled SiGe HBTs

    Get PDF
    We investigate the reliability of state-of-the-art SiGe heterojunction bipolar transistors (HBTs) in 55-nm technology under mixed-mode stress. We perform electrical characterization and implement a TCAD model calibrated on the measurement data to describe the increased base current degradation at different collector-base voltages. We introduce a simple and self-consistent simulation methodology that links the observed degradation trend to interface traps generation at the emitter/base spacer oxide ascribed to hot holes generated by impact ionization (II) in the collector/base depletion region. This effectively circumvents the limitations of commercial TCAD tools that do not allow II to be the driving force of the degradation. The approach accounts for self-heating and electric fields distribution allowing to reproduce measurement data including the deviation from the power-law behavior

    System With RF Power Delivery Capabilities for Active Safety Enhancement in Industrial Vehicles Using Interchangeable Implements

    Get PDF
    In this paper, an active system for safety enhancement in industrial and off-highway vehicles using interchangeable implements is presented. The system, applied to the real case study of automatic identification of implements connected to a telehandler, is developed by adopting a hardware–software codesign approach. It is comprised of two devices: the Illuminator-Gateway Device (IGD) and the End Device (ED). Differently from other similar solutions, the system embeds a complete radio frequency (RF) power delivery system that is compliant with the regulations in force in Europe and in North America to extend the battery lifetime of the ED. In particular, the IGD, positioned on the free end of the telescopic arm of the telehandler, supplies the RF energy required for the operations of the ED and acts as a gateway sending the data received from the ED to the other Electronic Control Units (ECUs) of the vehicle. The ED, instead, is mounted on the connected implement, collects the RF energy delivered by the IGD, and wirelessly sends the unique identifier, the key parameters, and the calculated effective working time of the implement. This information can be used by the main ECU of the vehicle for safety-related purposes and programmed maintenance. Experimental results show that the implemented RF power delivery system is able to gather up to 63% of the power required by the ED when it is on duty, thus significantly extending its battery lifetime

    Active Safety System with RF Energy Harvesting Capabilities for Industrial Applications using Interchangeable Implements

    Get PDF
    In this paper a system for the remote powering of low power electronic devices is presented. The system has been applied to a real industrial application allowing to enhance active safety in industrial vehicles. It is comprised of two main devices: i) the End Device (ED) with an embedded Radio Frequency (RF) energy harvester; ii) the Illuminator-Gateway Device (IGD) with an embedded RF power transmitter. Thanks to the optimization of the customized dual band Planar Inverted Folded Antenna (PIFA) used, the ULP architecture of the ED, the hardware-software co-design approach used and the optimization of the ED firmware, the proposed system is able to provide up to the 63% of the power required by the ED when it is on duty

    A WSN System Powered by Vibrations to Improve Safety of Machinery with Trailer

    Get PDF
    In this paper we present an energetically autonomous wireless sensor system designed to enhance safety in industrial machinery comprising a main vehicle with an attached trailer. The proposed system establishes a wireless link between the vehicle ECU and our sensors to provide motion dynamic data of trailer to the vehicle stability control algorithm. The wireless sensor devices we implemented comprise a 3-axial accelerometer and a 3-axial magnetometer to detect the trailer operating conditions. Such motion data are elaborated using an ultra-low power MCU, which communicates to vehicle\u2019 ECU using an IEEE 802.15.4 channel at 2.4GHz. To enable perpetual operation of the system, we developed a vibrational energy harvesting system, VIBester, capable to gather kinetic energy from trailer natural vibrations and convert such energy in electrical energy for the system power supply. The vibrational energy harvester adopts a piezoelectric (PZT) transducer to convert the kinetic energy and a custom AC/DC converter to supply the wireless sensor device
    • …
    corecore